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IMPROVED STREAM TEMPERATURE SIMULATIONS IN SWAT  
USING NSGA-II FOR AUTOMATIC MULTI-SITE CALIBRATION 

B. L. Barnhart,  G. W. Whittaker,  D. L. Ficklin 

ABSTRACT. Stream temperature is one of the most influential parameters impacting the survival, growth rates, distribu-
tion, and migration patterns of many aquatic organisms. Distributed stream temperature models are crucial for providing 
insights into variations of stream temperature for regions and time periods for which observed data do not exist. This 
study uses a relatively new stream temperature model incorporated into a modified version of the Soil and Water Assess-
ment Tool (SWAT) in order to simulate stream temperatures at five sites on the Calapooia River within the Calapooia 
basin in northwest Oregon. The Nondominated Sorting Genetic Algorithm II (NSGA-II) is used to calibrate flow at a sin-
gle outlet and stream temperatures at five sites. Few studies have calibrated this stream temperature model for different 
basins, and this is the first demonstration of an automatic, subbasin-level calibration for stream temperature at multiple 
sites. The subbasin calibration is shown to better match the observed data than the original SWAT temperature model as 
well as the modified temperature model calibrated basinwide. In addition to providing improved stream temperature 
simulations for the Calapooia River, the subbasin-level automatic calibration technique extends the applicability of the 
model, especially for complex basins with large spatial variability of topography, land use, and soil type. 
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hroughout the western U.S., rising stream tem-
peratures are becoming an increasing problem, 
affecting coldwater aquatic habitats and fish spe-
cies. Section 303(d) of the Clean Water Act re-

quires states to develop lists of impaired waters that do not 
meet water quality standards for a variety of environmental 
variables. In Oregon, the most commonly listed impairment 
of rivers is due to high temperatures (USEPA, 2003). This 
is highly relevant, since increasing stream temperatures can 
affect the survival, growth rates, distribution, and migration 
patterns of many aquatic organisms, including salmon and 
trout (USEPA, 2003). 

To determine whether streams are 303(d) impaired due 
to high temperatures, states must facilitate studies to track 
stream fluctuations amid natural and anthropogenic chang-
es, typically by installing and monitoring in situ measure-
ment devices at discrete locations along stream segments. 
However, the spatial and temporal resolution of in situ 
measurements is inherently limited. In order to address 
these limitations, models are often used to provide insights 
into variations of stream temperature for regions and time 

periods for which observed data do not exist. A large num-
ber of stream temperature models exist, ranging in com-
plexity, computational efficiency, and applicability. For a 
recent overview of available stream temperature models, 
see Ficklin et al. (2012). This investigation focuses on one 
such model, introduced by Ficklin et al. (2012), that utilizes 
the Soil and Water Assessment Tool (SWAT) to produce 
daily stream temperature simulations. 

SWAT is a mechanistic, or process-based, model that 
divides a basin into a number of subbasins and hydrologic 
response units (HRU) in order to model agricultural prac-
tices, fate and transport of soil and chemicals, and hydrolo-
gy at small scales (Arnold et al., 2012; Neitsch et al., 2005). 
SWAT has been utilized for distributed hydrologic model-
ing in basins throughout the world and is especially useful 
for modeling the environmental impacts associated with 
different land use and management practices (Chaplot et 
al., 2004; Fohrer et al., 2005; Li et al., 2009; Vache et al., 
2002). 

Currently, SWAT calculates stream temperatures using a 
simple linear model that directly relates stream tempera-
tures to air temperature, as demonstrated by Stefan and 
Preud’homme (1993). Ficklin et al. (2012) modified the 
original linear stream temperature model within SWAT. 
The modified model utilizes the stream network within 
SWAT to account for surface and lateral flow, groundwater 
and snowmelt contributions in each subbasin, as well as 
travel time and ambient air temperatures. The modified 
model better matched observed data for seven coastal and 
mountainous basins in the western U.S. (Ficklin et al., 
2012). While the modified model was an invaluable im-
provement for simulating stream temperatures using 
SWAT, it used a manual calibration technique. In order for 
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the model to be applicable to large basins, where stream 
temperatures are simulated within different regions contain-
ing different topography, soil types, and land use, a more 
applicable calibration routine must be adopted. 

Automatic calibration techniques have been widely used 
for environmental models, including SWAT. In particular, 
SWAT has been calibrated at basins throughout the world 
using single or multiple sites and objectives for variables 
such as streamflow, sediment, and nutrients (N and P) 
(Bekele and Nicklow, 2007; Santhi et al., 2001; Santhi et 
al., 2008; White and Chaubey, 2005; Zhang et al., 2009b; 
Zhang et al., 2010). Automatic methods are especially at-
tractive because they are objective and relatively easy to 
use, in contrast to subjective and labor-intensive manual 
techniques (Zhang et al., 2009a). 

Among the most successful automatic calibration tech-
niques are numerous evolutionary search algorithms. These 
algorithms seek the fittest sets of calibration parameters by 
minimizing one or more objective functions that represent 
the differences between observed and simulated data. There 
are a wide variety of evolutionary algorithms, differentiated 
by their methods for seeking solutions within the decision 
space and calculating fitness. Some examples include the 
Nondominated Sorting Genetic Algorithm II (NSGA-II) 
introduced by Deb et al. (2002), the Strength Pareto Evolu-
tionary Algorithm 2 (SPEA2) introduced by Zitzler et al. 
(2001), the S-Metric Selection Evolutionary Multiobjective 
Optimization Algorithm (SMS-EMOA) introduced by 
Beume et al. (2007), particle swarm optimization (PSO) 
introduced by Kennedy and Eberhart (1995), and the Shuf-
fled Complex Evolution Algorithm (SCE-UA) introduced 
by Duan et al. (1992). While the choice of the ideal algo-
rithm depends on the application, there are a number of 
studies that attempt to examine the relative performance of 
evolutionary algorithms (Tang et al., 2006; Zhang et al., 
2009a). Beume et al. (2007) demonstrated that SMS-
EMOA, which calculates fitness based on a dominated hy-
pervolume within the solution space, provides better results 
than NSGA-II and SPEA2 for some select optimization 
problems (Beume et al., 2007; Naujoks et al., 2005). For 
hydrologic model calibration, Tang et al. (2006) suggested 
that while SPEA2 and NSGA-II demonstrate comparable 
results, SCE-UA is only suitable for calibration of small 
parameter sets. 

Dealing specifically with the Calapooia River, Confesor 
and Whittaker (2007) used NSGA-II to calibrate surface 
and baseflow using two separate objectives. In addition, 
Whittaker et al. (2010) used NSGA-II to calibrate stream-
flow and baseflow using over 4,000 parameters within the 
Blue River basin. Whittaker et al. (2010) demonstrated that 
NSGA-II successfully calibrated this large set of parame-
ters while avoiding overparameterization and overfitting of 
the data. 

For this study, the modified stream temperature model 
requires four calibration parameters. Additionally, the pa-
rameters can be set to vary for different periods of time to 
represent seasonal effects. We specify four seasons; there-
fore, the model requires 16 total parameters for basinwide 
calibration and 16 parameters for each subbasin for sub-
basin calibration. With even a modest number of subbasins, 

the total number of parameters to be calibrated will be 
large. Therefore, we chose to utilize NSGA-II and a meth-
odology similar to that of Whittaker et al. (2010) to cali-
brate flow at the watershed outlet and stream temperature at 
five sites within the Calapooia basin. Stream temperature 
using the modified model will be calibrated at both the ba-
sin and subbasin scales. Both the basinwide and subbasin-
level calibrated stream temperatures will be compared to 
existing temperature data sets for five different sites on the 
Calapooia River as well as the original SWAT stream tem-
perature model by Stefan and Preud’homme (1993). The 
benefits of using an automatic, multi-site, subbasin-level 
calibration technique will be demonstrated. 

To our knowledge, only a few studies have calibrated 
the Ficklin et al. (2012) modified stream temperature model 
in SWAT (Ficklin et al., 2012; Ficklin et al., 2013; Luo et 
al., 2013). None of these studies successfully calibrated the 
model for multiple sites simultaneously, nor at subbasin 
scales. Therefore, the application of NSGA-II to calibrate 
the modified stream temperature model at subbasin scales 
will increase the model’s applicability to other basins, es-
pecially those that contain a large amount of spatial varia-
bility (e.g., topography, land use, and soil type) between 
subbasins. 

The resulting calibrated model will simulate daily 
stream temperatures for five sites along the Calapooia Riv-
er from 2009 to 2012. The ability to produce continuous, 
daily time series simulations of stream temperatures can be 
extremely useful for accurately modeling conditions and 
dynamics of aquatic species and habitats, especially in 
303(d) impaired rivers throughout the western U.S. 

MATERIALS AND METHODS 
STUDY AREA 

The Calapooia basin (USGS 10-digit HUC 1709000303) 
is located in northwest Oregon and has a drainage area of 
approximately 950 km2, as shown in figure 1. Its longest 
river at 120 km long, the Calapooia River, is a gravel-bed 
tributary of the Willamette River and flows northwest from 
the western Cascade Mountains to its outlet at Albany, Or-
egon, where it joins the Willamette River (Hoag et al., 
2012). The elevation of the basin ranges from approximate-
ly 1,576 m in the Cascade Mountains to 56 m in the valley 
(Hoag et al., 2012). 

The basin consists mostly of two distinct regions. The 
upper region east of Holley, Oregon, in the western Cas-
cade Mountains is characterized by steep slopes and forest-
ed land, while the low region of the valley, northwest of 
Holley, is characterized by flat agricultural land, hay and 
pasture land, and rural residential areas. Annual precipita-
tion, 50% of which occurs between December and Febru-
ary, varies from less than 1,000 mm (39 in.) at low eleva-
tions to more than 2,000 mm (79 in.) in the foothills of the 
western Cascade Mountains (Hoag et al., 2012). 

SOIL AND WATER ASSESSMENT TOOL 
The Soil and Water Assessment Tool (SWAT) is a 

widely known, mechanistic, semi-distributed simulation 
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model that can be used to quantify the impact of different 
land management practices on soil and water quality (Ar-
nold et al., 2012; Neitsch et al., 2005). It is a comprehen-
sive model that includes components of hydrology, weath-
er, sedimentation, erosion, soil and water temperature, plant 
growth, nutrients, pesticides, and agricultural management 
practices (Arnold et al., 2012; Neitsch et al., 2005). 

For this investigation, we used ArcSwat 2009.10.1 along 
with ArcGIS 10 to delineate the Calapooia basin using a 
1 arc-second National Elevation Dataset (~30 m) available 
from the U.S. Geological Survey (Gesch et al., 2002). The 
Calapooia basin was divided into 27 separate subbasins and 
a total of 176 hydrologic response units (HRUs) character-
ized by different combinations of land use, land cover, soil 
type, and slope. The state soil geographic (STATSGO) 
database for Oregon was used to specify soil types, and 
land use was determined from the USGS National Water-
Quality Assessment (NAWQA) program 
(https://water.usgs.gov/nawqa/). Nine categories of land use 
were characterized. Generally, these included the forests of 
the upper Calapooia basin (~41%), the agricultural (~34%) 
and pasture (~11%) lands of the lower Calapooia, and the 
remaining wetlands (~10%), urban areas (~3%), and water 
bodies (<1%). 

We acknowledge that this setup is a fairly simplistic 
model of the basin. It was specifically chosen to disregard 
small, intermittent tributaries and model stream tempera-
ture for the Calapooia River only. 

Two weather stations were chosen for precipitation and 
temperature inputs from the two main topographical re-
gions: the H.J. Andrews Experimental Forest meteorologi-
cal site (44° 12 42 N, 122° 15 21 W, 482 m elev.), and 
the Hyslop weather station (44° 38 03 N, 123° 11 24 W, 
70 m elev.) in Corvallis, Oregon. Available daily weather 
data from 1970 through 2012 were used. In addition, ob-

served daily streamflow and stream temperature data were 
utilized for calibration and validation of SWAT. A USGS 
streamflow gauge provided daily discharge measurements 
for the Calapooia River at Albany, Oregon, from 1970 
through 1981. The gauge was removed in 1981, preventing 
more recent data from being obtained. Measured stream 
temperature data were obtained from Joe Ebersole of the 
U.S. EPA Western Ecological Division for five sites on the 
mainstem Calapooia River from 2009 through 2012 
(J. Ebersole, personal communication). Dates of the availa-
ble data, split into calibration and validation regions, are 
shown in figure 2. Daily averages were aggregated from the 
initial 15 min sampling times. Stream temperatures were 
measured in °C with an accuracy of 0.3°C and precision of 
0.2° (J. Ebersole, personal communication). 

MODIFIED STREAM TEMPERATURE MODEL 
The original stream temperature model within SWAT 

was introduced by Stefan and Preud’homme (1993) and 
assumes that stream temperature is linearly related to air 
temperature, as shown in equation 1: 

 stream air5 0 0 75T . . T   (1) 

This model is highly simplistic, does not take into ac-
count the overall stream network, and often overestimates 
stream temperatures when compared to observed data 
(Ficklin et al., 2012). Therefore, Ficklin et al. (2012) devel-
oped a modified stream temperature model within SWAT 
that utilizes the distributed hydrologic network. The modi-
fied model requires additional Fortran files to accompany 
the standard SWAT distribution, which are available upon 
request from Darren Ficklin at dficklin@indiana.edu. The 
model has been tested with SWAT2009 rev. 591. The mod-
ified model uses water temperatures from upstream, surface 
runoff, groundwater flow, and snowmelt, as well as travel 

 

Figure 1. The Calapooia basin in northwest Oregon. 
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time and exposure to the ambient air. Equations 2 through 4 
demonstrate explicitly the stream temperature calculations 
for each subbasin. First, equation 2 shows the basic mixing 
model to estimate local water temperature: 

w,local

snow snow,sub GW GW,sub surf,sub lat,sub air,lag

sub,yld

T

T Q T Q Q Q T

Q



             
 (2) 

where Tw,local is the local water temperature, Tsnow and 
Qsnow,sub are the snowmelt temperature and flow contribu-
tion within the subbasin, TGW and QGW,sub are the ground-
water temperature and flow contribution within the sub-
basin,  is a calibration coefficient, Tair,lag is the air tem-
perature calculated with a user-specified lag, Qsurf,sub is the 
surface water runoff contribution within the subbasin, 
Qlat,sub is the soil water lateral flow contribution within the 
subbasin, and Qsub,yld is the total water yield within the sub-
basin. Temperatures are given in °C, flows are given in m3 
day-1, the calibration coefficient is dimensionless, and the 
air temperature is the average air temperature in °C as aver-
aged over a user-specified integer of days, or lag. 

The local stream temperature calculation for the sub-
basin is then adjusted in order to include contributions from 
upstream subbasins, as shown in equation 3: 

 w,upstream outlet sub,yld w,local sub,yld
w,adj

outlet

T Q Q T Q
T

Q

     (3) 

where Tw,adj is the adjusted water temperature. The first 
term in the numerator of equation 3 is the upstream contri-
bution to the stream temperature, and the second term in 
the numerator is the local contribution to the stream tem-
perature. These contributions are divided by the total flow 
leaving the subbasin (Qoutlet) to achieve the adjusted stream 
temperature. 

Finally, the stream temperatures are allowed to interact 
with the surrounding air temperature for some duration or 
travel time as the stream travels through the subbasin. This 
is demonstrated in equation 4: 

 
 

w w,adj air w,adj air

airw w,adj air w,adj

            if   0

    if  0

T T K T T TT T

T T K T T TT T

     
       

 (4) 

Essentially equation 4 describes one-dimensional heat 
transfer between the air and stream, where TT is the travel 
time of the stream (h), and K is a bulk heat transfer coeffi-
cient (h-1). TT is calculated internally by the SWAT model, 
while K is a calibration parameter ultimately decided by the 
user. The calibration parameter  is required to adequately 
model water temperature pulses when Tair is below but near 
0°C (Ficklin et al., 2012). 

The above modified stream temperature model in equa-
tions 2 through 4 uses four calibration parameters to adjust 
the model to match observed measurements of stream tem-
perature. Ficklin et al. (2012) showed that these coefficients 
can achieve better calibration results when they are allowed 
to vary seasonally. Therefore, the modified model specifies 
four calibration parameters for each of four time durations, 
totaling 16 parameters for basin calibration. While Ficklin 
et al. (2012) introduced and tested the modified stream 
temperature model within SWAT, the model has only been 
calibrated at the basin level, using a single-site, manual 
calibration method. In this study, we extend the applicabil-
ity of this stream temperature model by demonstrating a 
new automatic calibration technique that calibrates the pa-
rameters at the subbasin scale using NSGA-II. That is, the 
16 parameters will be adjusted automatically for each sub-
basin within the basin. First, an overview of the genetic 
algorithm will be described. 

NONDOMINATED SORTING GENETIC ALGORITHM II 
Genetic algorithms (GA) use the idea of evolution’s 

competitive selection as a computational concept to achieve 
solutions to optimization problems (Deb et al., 2002). Es-
sentially, possible solutions are treated as individuals with-
in a population. New solutions are found via a simulated 
reproduction within the population, and the fittest of the 
population are selectively chosen for the next generation, 

 

Figure 2. Time periods of available stream temperature data for five different sites on the Calapooia River. 
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where fit is determined by the best optimization of a chosen 
objective function. 

The Nondominated Sorting Genetic Algorithm II 
(NSGA-II) is a genetic algorithm that relies on a nondomi-
nated sorting algorithm, an elitist selection method, and a 
crowding distance parameter to determine fit for multiple 
objectives (Deb et al., 2002). The method finds a set of 
individuals that approximate the Pareto optimal front, or 
solutions that are completely nondominated by any other 
solutions. This means that no additional solution can be 
found that further optimizes one objective without dimin-
ishing the optimization of another objective (Deb et al., 
2002). NSGA-II is fast and efficient for a small number of 
objectives and has been widely used for multi-objective 
calibration and validation of hydrological models (Bekele 
and Nicklow, 2007; Confesor and Whittaker, 2007; Whit-
taker et al., 2010; Zhang et al., 2010). As mentioned previ-
ously Whittaker et al. (2010) demonstrated that NSGA-II 
can efficiently and effectively find optimal parameter sets 
to calibrate SWAT using large sets of calibration parame-
ters without suffering from overparameterization and over-
fitting. Therefore, we adopted their methodology in order to 
utilize NSGA-II to calibrate SWAT for streamflow at the 
basin outlet and temperature at five sites on the Calapooia 
River. 

ALGORITHM SETUP AND IMPLEMENTATION 
An overview of the calibration setup utilizing NSGA-II 

and SWAT is shown in figure 3. Basically, N individuals 
are generated where each individual is comprised of a set of 
calibration parameters. The individuals are initially chosen 
randomly within their specified upper and lower limits. 
Parallel computing enables each individual to be evaluated 
simultaneously on a separate processor. This means that 
each individual, or set of parameters, is sent to SWAT as 
input and run on each node simultaneously. The number of 
individuals able to be processed is limited by the number of 
parallel nodes (computer processors) available to the user. 
The calibration techniques described here were coded in R 
and called SWAT as a Fortran subroutine from within R 
using the “.Fortran” command. For computation, we used 
100 nodes of a 206-node Beowulf cluster built by Gerald 
Whittaker at the USDA-ARS in Corvallis, Oregon (Whit-
taker, 2004). 

The outputs from the individual SWAT runs are re-
ceived from each of the nodes and are used along with 
measured data sets to calculate one or more objective func-
tions. NSGA-II sorting is then used to rank the individuals 
in terms of their success at optimizing the objective func-
tions, and crossover and mutation computations are per-
formed to produce the next generation of individuals. The 
process is then repeated on the new population for several 
hundred or thousand generations until stopping criteria are 
met. Different stopping criteria can be specified to ensure 
convergence. Typically, the algorithm is run until changes 
in the objective functions are below a specified threshold. 
For this study, we ran the algorithm for 1,000 generations 
to ensure that no further optimal solutions could be found. 
It should be mentioned that the use of optimization algo-
rithms for calibration introduces complexity to the standard 
SWAT model. This is manifested by the computational 
time required to achieve an optimal set of calibration pa-
rameters. For our application, computational time was not 
significant and did not hinder model calculation. 

The calibration techniques for streamflow and tempera-
ture are similar; however, the parameters and the objective 
functions differ. The modified stream temperature model is 
highly dependent on the flow values at each subbasin. 
Therefore, we first calibrated SWAT for streamflow before 
calibrating for stream temperature. Note that the hydrologi-
cal parameters, and resulting hydrology, are not dependent 
on the stream temperature model. This optimization routine 
is capable of simultaneously calibrating streamflows and 
temperatures. However, the observed data available for 
flow at Albany exists 30 years prior to the observed stream 
temperature data. Rather than running 30-year SWAT sim-
ulations, we calibrated the flow and temperature separately. 
The calibration parameters for streamflow are shown in 
table 1. 

The streamflow parameters include nine basinwide pa-
rameters, 13 subbasin-level parameters, and 18 HRU-level 
parameters. The parameters, as well as the upper and lower 
limits, were specified following suggestions made by Whit-
taker et al. (2010). For computing the objective functions, 
daily flow measurements at the basin outlet at Albany, Or-
egon, were used. Flow measurements were not available 
concurrently with stream temperature measurements, and 
therefore the calibration (1970-1975) and validation (1976-

 

Figure 3. Flowchart of automatic calibration of SWAT using a genetic algorithm. 
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1981) durations of the flow data were limited to the most 
recent periods when continuous data was available. In addi-
tion, an automated baseflow filter was used to separate flow 
into event-driven flow and baseflow (Arnold et al., 1995). 
Studies have pointed out the benefit of separating objective 
functions into baseflow and streamflow components (Whit-
taker et al., 2010; Zhang et al., 2010). The main reason is 
that calibration parameters will differ when trying to opti-
mize either peakflow or baseflow conditions. The genetic 
algorithm was set up to have two objectives: to minimize 
the root mean square error (RMSE) between the measured 
and observed values for event-driven flow and baseflow 
separately. The genetic algorithm is then able to find the 
approximation to the Pareto front, or set of optimal solu-
tions, which invariably consist of trade-offs between the 
two objectives. The user must then select an individual 
from the Pareto front to use as the optimal set of calibration 
parameters. 

Once the flow was calibrated within SWAT, the stream 
temperature could be simulated and calibrated using the 
flow-calibrated model. Stream temperatures were calibrated 
separately at the basin and subbasin levels and will be 
compared. Table 2 shows the temperature calibration pa-

rameters used for both setups. The four calibration parame-
ters for stream temperature were allowed to vary for four 
separate seasonal time periods, making a total of 16 param-
eters to be calibrated at the basin level (Ficklin et al., 2012). 
For the subbasin calibration, the total number of parameters 
to be calibrated was 432, or 16 multiplied by the 27 sub-
basins in the basin. Both the basin and subbasin level cali-
bration techniques utilize a single objective function: the 
total sum of RMSE values between measured and simulat-
ed stream temperatures for all five stream temperature 
monitoring sites. The choice and number of objective func-
tions is discussed further in the Discussion section. 

Due to the sparse stream temperature data available, the 
calibration and validation time periods were limited. Fig-
ure 2 shows the time periods of observed stream tempera-
ture used for calibration and validation between 2009 and 

Table 2. Parameters used for stream temperature calibration. 
Parameter Description Limits Resolution 

 Calibration multiplier 0.0 to 1.0 W or SUB 
K Bulk heat transfer coefficient (h-1) 0.0 to 1.0 W or SUB 
 Snowmelt adjustment factor (°C) 0.0 to 10 W or SUB 

Lag Integer of days over which to  
average air temperature 

0 to 14 W or SUB 

Table 1. Parameters used for discharge calibration using the SWAT model. 
Parameter Definition Limits[a] Resolution[b] 

PHU Heat units to bring plant to maturity 0.0 to 1500 HRU 
SOL_K Saturated hydraulic conductivity (mm h-1) 0.75 to 1.1* HRU-S 

SOL_AWC Available water capacity (mm mm-1) 0.75 to 1.1* HRU-S 
SOL_CRK Crack volume potential 0.0 to 0.3 HRU 

CH_N2 Manning’s n for main channel 0.014 to 0.075 SUB 
OV_N2 Manning’s n for overland flow 0.1 to 4.0 HRU 

CANMX Maximum canopy storage (mm) 0.0 to 5.0 HRU 
ESCO Soil evaporation compensation factor 0.1 to 1.0 HRU/W 
EPCO Plant water uptake compensation factor 0.1 to 1.0  HRU/W 

REVAPMN Threshold depth (mm) 0.001 to 200 HRU 
ALPHA_BF Alpha factor for baseflow (days) 0.04 to 1.0 HRU 
GW_DELAY Groundwater delay time (days) 0.0 to 60.0 HRU 
GW_REVAP Groundwater revap coefficient (days) 0.02 to 0.20 HRU 

SURLAG Surface runoff lag coefficient 1.0 to 21.0 W 
MSK_CO1 Calibration coefficient 0.0 to 3.0 W 
MSK_CO2 Calibration coefficient 0.0 to 5.0 W 

MSK_X Weighting factor 0.0 to 0.50 W 
TRNSRCH Transmission loss 0.1 to 0.90 HRU 

EVRCH Reach evaporation adjustment factor 0.1 to 0.90 HRU 
SLSUBBSN Average slope length (m) 0.75 to 1.25* HRU 

SLSOIL Slope length for lateral slope length (m) 0.0 to 30.0 W 
HRU_SLP Average slope steepness (m m-1) 0.75 to 1.25* W 

TIMP Snow pack temperature lag factor 0.01 to 1.00 W 
SMFMN Minimum melt factor for snow (mm °C-1 day-1) 1.4 to 6.9 SUB 
SMFMX Maximum melt factor for snow (mm °C-1 day-1) 1.4 to 6.9 SUB 
CHL_1 Longest tributary channel length in subbasin 0.75 to 1.25* SUB 
CH_S1 Average slope of tributary channels 0.75 to 1.25* SUB 
CH_W1 Average width of tributary channels 0.75 to 1.25* SUB 
CH_N1 Manning’s n for the tributary channels 0.75 to 1.25* SUB 
CH_K1 Effective hydraulic conductivity of tributary 0.025 to 10.0 SUB 
CH_L2 Length of main channel 0.75 to 1.25* SUB 
CH_S2 Average slope of main channel 0.75 to 1.25* SUB 
CH_W2 Average width of main channel 0.75 to 1.25* SUB 
CH_D Average depth of main channel 0.75 to 1.25* SUB 
CH_K2 Effective hydraulic conductivity of main channel 0.025 to 10.0 SUB 

CH_WDR Channel width to depth ratio 0.75 to 1.25* SUB 
ALPHA_BNK Alpha factor for bank storage recession curve 0.001 to 0.99 SUB 

GWQMN Threshold depth of water in shallow aquifer 0.0 to 200.0 HRU 
RCHRG_DP Recharge to deep aquifer 0.0 to 1.0 HRU 
GW_SPYLD Specific yield for shallow aquifer 0.001 to 0.009 HRU 

[a] Parameters marked with an asterisk (*) are multipliers of the default value in the SWAT model setup. 
[b] HRU = hydrologic response unit, HRU-S = HRU soil layer, SUB = subbasin, and W = basin. 
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2012. Efforts were made to evenly divide the calibration 
and validation periods while maintaining continuous data 
sets. 

RESULTS 
STREAMFLOW CALIBRATION AND VALIDATION 

As mentioned previously, streamflow was calibrated at 
the USGS site in Albany, Oregon, using parameters sug-
gested by Whittaker et al. (2010). A total of 1,000 genera-
tions were calculated, resulting in a population of nondom-
inated individuals, or sets of calibrated parameters, that 
optimally and jointly minimized the RMSE between simu-
lated and observed flow for both baseflow and event-driven 
flow. Since all individuals are equally optimal, the individ-
ual chosen is decided by the user according to the particular 
modeling needs. For example, a researcher interested in 
sediment analysis may prefer a streamflow simulation that 
weighs the event-driven objective more heavily than 
baseflow (Confesor and Whittaker, 2007). For our purpos-
es, we chose the individual in the middle of the front that 
weighs each objective equally. The resulting flow for the 
calibration and validation periods is plotted in figure 4. 

Table 3 shows the metrics used to determine the good-
ness-of-fit between the simulated flow and observed flow. 
SWAT has been shown to provide remarkably reliable re-
sults when predicting streamflow and crop yield, even 
when uncalibrated (Srinivasan et al., 2010). However, it is 
clear that the calibrated SWAT flows are superior to the 
uncalibrated values. For example, the mean error (ME), 
mean average error (MAE), root mean squared error 
(RMSE), and percent bias (PBIAS%) were all significantly 
reduced for both the calibration and validation periods us-
ing the genetic algorithm. In addition, three efficiency crite-
ria were used to determine the goodness-of-fit, including 
the Nash-Sutcliffe (NSE), Kling-Gupta (KGE), and volu-
metric (VE) efficiencies (Gupta et al., 2009; Krause et al., 

2005; Nash and Sutcliffe, 1970). All metrics show a clear 
increase in fit values when the genetic algorithm calibration 
technique is utilized. 

To demonstrate this further, figure 5 shows kernel densi-
ty estimates calculated for the differences between simulat-
ed and observed flows for both uncalibrated and calibrated 
outputs. Figure 5 clearly shows that the calibrated flows 
demonstrate more narrowly peaked density functions, indi-
cating a closer match to the observed data sets. 

TEMPERATURE CALIBRATION AND VALIDATION  
(BASIN VS. SUBBASIN SCALES) 

After calibrated streamflow parameters were available, 
these parameters were used within the original and modi-
fied stream temperature models. The modified stream tem-
perature model, by Ficklin et al. (2012), was calibrated at 
five stream temperature monitoring sites using the automat-
ic calibration technique described previously. The routine 
was performed to calibrate at the basin and subbasin scales, 
separately. Calibration and validation time periods were 
defined as shown in figure 2. Each calibration used the 
same set of optimized flow parameters and was run for 
1,000 generations. 

Figures 6 and 7 compare the resulting simulated daily 
stream temperatures between the original SWAT model 
and the subbasin-calibrated modified model. Table 4 shows 
the goodness-of-fit metrics between the three simulations 
and the observed stream temperatures. As expected, the 

Table 3. Streamflow calibration and validation statistics. 

Statistic 
Calibration (1970-1975) 

 
Validation (1976-1981) 

No Calib. GA Calib. No Calib. GA Calib. 
ME 6.97 1.52  4.91 -2.42 

MAE 15.71 7.33  10.81 6.01 
RMSE 37.71 18.12  25.89 14.28 
BIAS% 24.3 5.6  26.1 -12.9 

NSE 0.41 0.84  0.43 0.83 
KGE 0.58 0.87  0.57 0.8 
VE 0.45 0.73  0.43 0.68 

 

Figure 4. Observed and simulated daily streamflow from SWAT for the calibration (1970-1975) and validation (1976-1981) periods. The optimal 
set of calibration parameters that weighed each objective equally was used to produce the simulated output in SWAT. 
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modified temperature model (at both calibrated scales) 
more closely matched the observed data than the original 
SWAT model. Note that all three simulations used the same 
flow-calibrated parameters. When averaging the stream 
temperature metrics for all sites, the average calibration 
period PBIAS% was 13.62, -5.92, and -2.92 for the original 
SWAT model, the modified model with basin calibration, 
and the modified model with subbasin calibration, respec-

tively. The validation period showed similar PBIAS% val-
ues of 15.7, -6, and -4.08, respectively. Therefore, it is clear 
that the modified SWAT stream temperature model con-
sistently reduced the overestimation of stream temperatures 
seen in the original model. 

For the modified model, the subbasin calibration con-
sistently improved the results compared to basin calibra-
tion. From table 4, the RMSE averaged for all sites was 

Figure 6. Observed and simulated daily temperature values for five different sites on the Calapooia River during calibration. 

 

Figure 5. Kernel density estimation for the differences between daily simulated and observed streamflow at Albany, Oregon, as calculated by 
the uncalibrated SWAT model and the SWAT model calibrated with the genetic algorithm. The calibration (1970-1975) and validation (1976-
1981) periods are shown. 



57(2):  9 

2.58, 2.06, and 1.77, respectively, for the three models for 
the calibration period and 2.53, 2.13, and 1.87, respective-
ly, for the validation period. Each subbasin had its own set 
of calibration parameters, which greatly increased the mod-
el’s ability to more accurately model stream temperatures 
throughout the basin. 

Site 1 shows the most dramatic improvement in metrics 
between the basin calibration and the subbasin calibration. 
The NSE values were 0.73, 0.85, and 0.91, respectively, for 
the three models for the calibration period and 0.54, 0.79, 

and 0.86, respectively, for the validation period. In addi-
tion, the PBIAS% decreased from 16.9 to -5.3 to 2.5, re-
spectively, for the three models during the calibration peri-
od and from 27.3 to -5.1 to 4.2, respectively, during the 
validation period. Site 1 is closest to the western Cascade 
Mountains and is characterized by very different land use, 
topography, and soil types from the remaining sites, which 
are situated within the valley dominated by agriculture. 
Therefore, it is evident that a different set of calibration 
parameters should apply. The basin calibration, while per-

 

Figure 7. Observed and simulated daily temperature values for five different sites on the Calapooia River during validation. 

Table 4. Stream temperature calibration and validation statistics at five sites on the Calapooia River. 
Period Statistic Model Site 1 Site 2 Site 3 Site 4 Site 5 

Calibration RMSE Original 2.94 2.93 2.59 2.25 2.18 
  Basin 2.17 2.08 1.9 2.08 2.09 
  Subbasin 1.71 2.03 1.77 1.64 1.7 
 PBIAS% Original 16.9 20.5 15.2 9.8 5.7 
  Basin -5.3 1.4 -8.3 -8.7 -8.7 
  Subbasin 2.5 1.5 -6 -5.7 -6.9 
 R2 Original 0.88 0.83 0.88 0.89 0.9 
  Basin 0.87 0.88 0.91 0.89 0.91 
  Subbasin 0.91 0.85 0.91 0.92 0.94 
 NSE Original 0.73 0.24 0.76 0.82 0.85 
  Basin 0.85 0.62 0.87 0.85 0.86 
  Subbasin 0.91 0.64 0.89 0.91 0.91

Validation RMSE Original 3.18 2.44 2.59 2.3 2.14 
  Basin 2.17 2.63 1.98 2.07 1.79 
  Subbasin 1.79 2.51 1.76 1.69 1.62 
 PBIAS% Original 27.3 13.4 20 11.3 6.5 
  Basin -5.1 -12.5 -2.3 -5.2 -4.9 
  Subbasin 4.2 -11 -2.7 -5.1 -5.8 
 R2 Original 0.88 0.67 0.83 0.9 0.89 
  Basin 0.81 0.57 0.79 0.86 0.91 
  Subbasin 0.88 0.64 0.83 0.91 0.93 
 NSE Original 0.54 -0.29 0.55 0.82 0.84 
  Basin 0.79 -0.49 0.74 0.85 0.89 
  Subbasin 0.86 -0.37 0.79 0.9 0.91 
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forming better than the original SWAT model, was unable 
to account for these differences between subbasins. 

The improvement with the subbasin calibration of the 
modified model is again evident in figures 8 and 9, which 
show kernel density estimates for the differences between 
the simulated and observed stream temperatures as com-
pared between the original SWAT model and the modified 
calibrated models. The original SWAT model clearly con-
sistently overestimated the observed stream temperatures 
for all sites. In addition, the subbasin-calibrated modified 
model temperatures were better than the basin-level for all 
sites except site 2. Site 2 was the shortest data set available 
and exhibited the worst metrics for all three models tested. 
Sites 3, 4, and 5 showed incremental improvements from 
the basin to the subbasin calibrations. However, site 1 again 
showed dramatic improvement of the subbasin calibration 
over the basin calibration. 

The calibration parameters selected by the genetic algo-
rithm for the basin-level and subbasin-level methods are 
shown in tables 5 and 6. For reference, note that Ficklin et 
al. (2012) performed a sensitivity analysis for these four 
parameters within five different basins. They concluded 
that  was the most sensitive parameter, followed by K and 
, whereas Lag was shown to be insensitive. 

The parameter  adjusts the effect of surface runoff and 
lateral soil flow on stream temperatures, as shown in equa-
tion 2. Values closer to one indicate that surface runoff and 
lateral soil flows are closer to air temperature, which are 
usually the result of shallow soils or steeper slopes. The 
basin calibration gave values near 1.0 for all time regions. 

However, the subbasin calibration showed highly variable 
 values for the different sites and different time regions. 
Since this variable is highly sensitive, according to Ficklin 
et al. (2012), its variability may explain why the subbasin 
calibration was able to more accurately simulate heteroge-
neous stream temperature fluctuations between the sites. 

The parameter K is the heat transfer coefficient, shown 
in equation 4, and represents the transfer of heat from the 
air to streams during travel time. For basinwide calibration, 
the values are near zero for all time regions. Again, the 
subbasin calibration method exhibited a wide variety of K 
values, indicating diversity in the exchange of heat from air 
to streams for the different sites and throughout the year. 

The parameter  accounts for snowmelt pulses when the 
stream temperature is close to 0°C and the air temperature 
is less than 0°C, as shown in equation 4. Larger values of 
this parameter typically exist at higher elevations or in 
colder conditions where snowmelt occurs. Days 1 to 65 
show that site 1 has the largest value; however, this is not 
consistent for all time periods. 

Overall, allowing each subbasin to utilize its own cali-
bration variables has been shown to improve stream tem-
perature simulations, as shown in figure 10. Figure 10 
shows the resulting modified stream temperature simula-
tions for 2009-2012 for five sites on the Calapooia River. 
Vertical lines indicate the separation between the calibra-
tion, or training set, data and the validation data used. No 
vertical lines are shown for sites 4 and 5, where the calibra-
tion and validation sets were chosen based on natural 
breaks in the measured data. Clearly, the subbasin calibra-

 

Figure 8. Kernel density estimation for differences between measured and simulated stream temperature data for five sites on the Calapooia 
River during calibration. 
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tion of the modified model improved the stream tempera-
ture simulations for the Calapooia River. Therefore, this 
model better captured the variability of stream temperatures 
on the Calapooia River. 

 
Table 5. Optimally chosen parameters for basin-level calibration. 

  K  Lag 
Days 1-65 0.999 0.004 5.214 3

Days 66-125 0.998 0.008 4.017 1
Days 126-285 0.923 0.051 5.862 14
Days 286-366 0.999 0.017 0.034 4 

 
Table 6. Optimally chosen parameters for subbasin-level calibration.

 Site 1 Site 2 Site 3 Site 4 Site 5 
Days 1-65  

 0.81 0.80 0.90 0.92 0.71 
K 0.62 0.04 0.02 0.04 0.01 
 7.31 1.58 2.09 2.85 4.34 

Lag 1.00 13.00 2.00 13.00 11.00 
Days 66-125  

 0.60 0.23 0.33 0.87 0.25 
K 0.53 0.68 0.59 0.64 0.50 
 4.83 2.58 4.57 4.20 8.75 

Lag 5.00 8.00 9.00 9.00 5.00 
Days 126-285  

 0.74 0.71 0.47 0.42 0.56 
K 0.95 0.49 0.43 0.43 0.55 
 4.72 4.23 5.15 1.92 4.36 

Lag 13.00 6.00 13.00 3.00 12.00 
Days 286-366    

 0.12 0.51 0.18 0.95 0.54 
K 0.47 0.70 0.51 0.62 0.46 
 2.73 6.13 3.36 6.28 4.37 

Lag 9.00 6.00 9.00 7.00 9.00 

 

DISCUSSION 
Stream temperature simulations at five sites in the Cala-

pooia River using the Ficklin et al. (2012) model within 
SWAT were greatly improved by using an automatic, sub-
basin-level calibration method. This method, therefore, can 
be extremely useful when simulating stream temperatures 
at multiple locations within large, diverse basins. A draw-
back of this particular investigation was the lack of ob-
served streamflow data for recent years as well as the short 
durations of stream temperature data available for the Cala-
pooia River. Longer periods of measured data would allow 
for more accurate calibration and would improve the vali-
dation results. 

As described earlier, our study was limited to a single 
objective function: minimizing the sum of all RMS errors 
for all the measurement sites. In fact, the calibration routine 
was tested using each of the five sites as separate objectives 
with NSGA-II; however, the five-objective calibration re-
sults were inferior to the single objective where all sites 
were superposed. This is contrary to findings of other stud-
ies, which insist that tension among multiple objectives 
improves the agreement between simulated and observed 
data (Bekele and Nicklow, 2007; Cao et al., 2006; Zhang et 
al., 2008; Zhang et al., 2010). One explanation for our re-
sult could be the relatively high number of objectives used. 
While NSGA-II is robust for multi-objective optimization, 
it may encounter problems in finding optimal solutions 
when a large number of objectives are specified (Beume et 
al., 2007). The use of more advanced genetic algorithms, 

 

Figure 9. Kernel density estimation for differences between measured and simulated stream temperature data for five sites on the Calapooia 
River during validation. 
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such as SMS-EMOA, which calculates selection based on a 
dominated hypervolume, may allow for optimization of a 
larger number of objectives, for example, one objective for 
each site, while still keeping computational time low. This 
may achieve more accurate simulation results and allow for 
simultaneous calibration of streamflow and temperature 
simulations using one algorithm, assuming that simultane-
ous observed data are available. 

In terms of describing the resulting optimal set of cali-
bration parameters, this study does not show a consistent 
physical interpretation for all the calibration parameters. 
Further study is needed to analyze the potential relation-
ships between these calibrated parameters and particular 
land uses, soil types, or topology. With a more detailed 
study, and systematic subbasin delineation, perhaps the 
calibration parameters could be tied to physical parameters, 
such as land use, soil depth, canopy covering, or riparian 
barrier width. 

Finally, the modified stream temperature model takes in-
to account different temporal regimes to capture the differ-
ent impacts that hydrology and air temperature have on 
stream temperatures throughout the year. However, season-
al periods were selected before conducting the genetic algo-
rithm calibration method. An improvement in the method 
would be to allow for fluctuating temporal scales, each 
containing its own set of calibration parameters within each 
subbasin. This may increase the computational time, but it 
would ensure that seasonality is correctly, and objectively, 
accounted for within the stream temperature model. 

CONCLUSION 
This investigation used a modified stream temperature 

model within SWAT, introduced by Ficklin et al. (2012), to 
simulate stream temperatures at five different sites along 
the Calapooia River in northwest Oregon. We used NSGA-
II to automatically parameterize the models in order to ac-
curately simulate both streamflow and temperature at mul-
tiple sites within the Calapooia basin. We are not aware of 
any other study that automatically calibrates the Ficklin et 
al. (2012) model for multiple sites and at the subbasin 
scale. The results showed that the Ficklin et al. (2012) 
model, whether calibrated for basinwide or subbasin levels, 
gave better results than the original SWAT stream tempera-
ture model for five sites on the Calapooia River. The results 
also showed that subbasin calibration improved stream 
temperature simulations compared to basinwide calibration. 
These results will be useful for other studies attempting to 
calibrate and simulate stream temperatures using the Fick-
lin et al. (2012) model. They will especially be pertinent to 
large, highly diverse basins exhibiting dramatic changes in 
topography, land use, and soil type. 
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